The STING-mediated type I interferon (IFN) signaling pathway has been shown to play critical roles in antitumor immunity. Here, we demonstrate that an endoplasmic reticulum (ER)-localized JmjC domain-containing protein, JMJD8, inhibits STING-induced type I IFN responses to promote immune evasion and breast tumorigenesis. Mechanistically, JMJD8 competes with TBK1 for binding with STING, blocking STING-TBK1 complex formation and restricting type I IFN and IFN-stimulated gene (ISG) expression as well as immune cell infiltration. JMJD8 knockdown improves the efficacy of chemotherapy and immune checkpoint therapy in treating both human and mouse breast cancer cell-derived implanted tumors. The clinical relevance is highlighted in that JMJD8 is highly expressed in human breast tumor samples, and its expression is inversely correlated with that of type I IFN and ISGs as well as immune cell infiltration. Overall, our study found that JMJD8 regulates type I IFN responses, and targeting JMJD8 triggers antitumor immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2023.03.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!