Since lead-based piezoelectric nanogenerators (PENGs) possess serious health risks, environmental problems, proper disposal issues, and biocompatibility concerns, this work presents the fabrication of a flexible piezoelectric nanogenerator utilizing lead-free orthorhombic AlFeOnanorods for biomechanical energy scavenging to sustainably power electronics. Hydrothermal technique is used to synthesize the AlFeOnanorods and the PENG was fabricated on Indium tin oxide (ITO) coated Polyethylene terephthalate (PET) flexible film with AlFeOnanorods interspersed in polydimethylsiloxane (PDMS). transmission electron microscopy proved that the AlFeOnanoparticles are of nanorods shape. Through x-ray Diffraction, it is validated that AlFeOnanorods have orthorhombic phase and crystalline structure. A high piezoelectric charge coefficient () of 400 pm Vis obtained from the piezoelectric force microscopy of AlFeOnanorods. With optimized concentration of AlFeOin the polymer matrix, an open circuit voltage () of 30.5 V, current density () of 0.7888±0.0001A cmand an instantaneous power density of 240.6 mW mare obtained under the application of a force of 1.25 kgf. To investigate the nanogenerator's practical utility, the PENG is used for lighting multiple LEDs, charging of a capacitor and as a pedometer via biomechanical energy harvesting. Hence, it can be employed for developing various self-powered wearable electronics such as flexible skin, artificial cutaneous sensors, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/accc90DOI Listing

Publication Analysis

Top Keywords

biomechanical energy
12
flexible piezoelectric
8
piezoelectric nanogenerator
8
alfeonanorods interspersed
8
energy scavenging
8
scavenging sustainably
8
sustainably power
8
power electronics
8
alfeonanorods
6
piezoelectric
5

Similar Publications

Hovering hawkmoths exploit unsteady circulation to produce aerodynamic force.

Biol Lett

January 2025

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < < 0.

View Article and Find Full Text PDF

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory.

View Article and Find Full Text PDF

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!