Mitochondrial complex III bypass complex I to induce ROS in GPR17 signaling activation in GBM.

Biomed Pharmacother

Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; Science Center, Tampere University Hospital, ArvoYlpönkatu 34, 33520 Tampere, Finland. Electronic address:

Published: June 2023

Guanine nucleotide binding protein (G protein) coupled receptor 17 (GPR17) plays crucial role in Glioblastoma multiforme (GBM) cell signaling and is primarily associated with reactive oxidative species (ROS) production and cell death. However, the underlying mechanisms by which GPR17 regulates ROS level and mitochondrial electron transport chain (ETC) complexes are still unknown. Here, we investigate the novel link between the GPR17 receptor and ETC complex I and III in regulating level of intracellular ROS (ROSi) in GBM using pharmacological inhibitors and gene expression profiling. Incubation of 1321N1 GBM cells with ETC I inhibitor and GPR17 agonist decreased the ROS level, while treatment with GPR17 antagonist increased the ROS level. Also, inhibition of ETC III and activation of GPR17 increased the ROS level whereas opposite function was observed with antagonist interaction. The similar functional role was also observed in multiple GBM cells, LN229 and SNB19, where ROS level increased in the presence of Complex III inhibitor. The level of ROS varies in Complex I inhibitor and GPR17 antagonist treatment conditions suggesting that ETC I function differs depending on the GBM cell line. RNAseq analysis revealed that ∼ 500 genes were commonly expressed in both SNB19 and LN229, in which 25 genes are involved in ROS pathway. Furthermore, 33 dysregulated genes were observed to be involved in mitochondria function and 36 genes of complex I-V involved in ROS pathway. Further analysis revealed that induction of GPR17 leads to loss of function of NADH dehydrogenase genes involved in ETC I, while cytochrome b and Ubiquinol Cytochrome c Reductase family genes in ETC III. Overall, our findings suggest that mitochondrial ETC III bypass ETC I to increase ROS in GPR17 signaling activation in GBM and could provide new opportunities for developing targeted therapy for GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114678DOI Listing

Publication Analysis

Top Keywords

ros level
20
complex iii
12
ros
12
gpr17
10
iii bypass
8
ros gpr17
8
gpr17 signaling
8
signaling activation
8
gbm
8
activation gbm
8

Similar Publications

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma.

Ann Hematol

January 2025

Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.

Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation.

Cell Signal

January 2025

Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:

Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!