Dynamical Simulations of Carotenoid Photoexcited States Using Density Matrix Renormalization Group Techniques.

J Phys Chem A

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom.

Published: April 2023

We present a dynamical simulation scheme to model the highly correlated excited state dynamics of linear polyenes. We apply it to investigate the internal conversion processes of carotenoids following their photoexcitation. We use the extended Hubbard-Peierls model, , to describe the π-electronic system coupled to nuclear degrees of freedom. This is supplemented by a Hamiltonian, , that explicitly breaks both the particle-hole and two-fold rotation symmetries of idealized carotenoid structures. The electronic degrees of freedom are treated quantum mechanically by solving the time-dependent Schrödinger equation using the adaptive time-dependent DMRG (tDMRG) method, while nuclear dynamics are treated via the Ehrenfest equations of motion. By defining adiabatic excited states as the eigenstates of the full Hamiltonian, , and diabatic excited states as eigenstates of , we present a computational framework to monitor the internal conversion process from the initial photoexcited 1B state to the singlet triplet-pair states of carotenoids. We further incorporate Lanczos-DMRG to the tDMRG-Ehrenfest method to calculate transient absorption spectra from the evolving photoexcited state. We describe in detail the accuracy and convergence criteria for DMRG, and show that this method accurately describes the dynamical processes of carotenoid excited states. We also discuss the effect of the symmetry-breaking term, , on the internal conversion process, and show that its effect on the extent of internal conversion can be described by a Landau-Zener-type transition. This methodological paper is a companion to our more explanatory discussion of carotenoid excited state dynamics in Manawadu, D.; Georges, T. N.; Barford, W. Photoexcited State Dynamics and Singlet Fission in Carotenoids. , , 1342.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150368PMC
http://dx.doi.org/10.1021/acs.jpca.3c00988DOI Listing

Publication Analysis

Top Keywords

internal conversion
16
state dynamics
12
excited states
12
photoexcited state
12
excited state
8
degrees freedom
8
states eigenstates
8
conversion process
8
carotenoid excited
8
states
5

Similar Publications

Pollution profiles, pathogenicity, and toxicity of bioaerosols in the atmospheric environment of urban general hospital in China.

Environ Pollut

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.

View Article and Find Full Text PDF

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.

View Article and Find Full Text PDF

Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides.

Foods

January 2025

State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.

In order to overcome the bioavailability limitation of polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!