Developing adsorbents with multiple merits in capacity, selectivity, mass transfer, and stability toward CH/CO separation is crucial and challenging for producing high-purity CH for advanced polymers and the electronic industry. Here, we demonstrate a vertex strategy to create adsorbents combining these merits through rationally designing the vertex groups of a wavy-shaped framework in layered 2D metal-organic frameworks (MOFs) to finely regulate the local conformation and stacking interactions, which creates the optimal inter- and intralayer space to realize simultaneous improvement of adsorption thermodynamics and kinetics. Two new hydrolytically stable MOFs, ZUL-330 and ZUL-430, were prepared, and diverse experiments and modeling on both adsorption equilibrium and diffusion were performed. Record separation selectivities coupled with extraordinary dynamic CH capacities were achieved for CH/CO mixtures with different proportions (50/50 or 10/5, v/v), along with a small diffusion barrier and fast mass transfer. Consequently, polymer-grade (99.9%) and electronic-grade (99.99%) CH were obtained with excellent productivities of up to ∼6 mmol cm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c01784 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!