Indirect Bandgap Emission of the Metal Halide Perovskite FAPbI at Low Temperatures.

J Phys Chem Lett

Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China.

Published: April 2023

In this work, we provide a picture of the band structure of FAPbI by investigating low-temperature spin-related photophysics. When the temperature is lower than 120 K, two photoluminescence peaks can be observed. The lifetime of the newly emerged low-energy emission is much longer than that of the original high-energy one by two orders of magnitude. We propose that Rashba effect-caused spin-dependent band splitting is the reason for the emergence of the low-energy emission and verify this using the magneto-optical measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00523DOI Listing

Publication Analysis

Top Keywords

low-energy emission
8
indirect bandgap
4
bandgap emission
4
emission metal
4
metal halide
4
halide perovskite
4
perovskite fapbi
4
fapbi low
4
low temperatures
4
temperatures work
4

Similar Publications

Rationalization of the structural, electronic and photophysical properties of silver(I) halide -picolylamine hybrid coordination polymers.

Dalton Trans

January 2025

Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.

Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)] compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)] family.

View Article and Find Full Text PDF

Natural and anthropogenic factors controlling organic carbon storage in riverine wetlands along South Korea's four rivers.

Sci Rep

January 2025

Division of Earth and Environmental System Sciences, Department of Oceanography, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513, Busan, Republic of Korea.

This study explores carbon sequestration in South Korea's riverine wetlands, focusing on the four major rivers: Han, Yeongsan, Geum, and Nakdong. Field data from the Yeongsan River wetland, including 3D topography surveys, grainsize analyses, and loss-on-ignition measurements, were used to assess carbon stocks and their environmental drivers. The Yeongsan River was selected as a representative site due to its geomorphological, hydrological, and climatic similarities with the other three major rivers, which influence sediment transport and carbon dynamics.

View Article and Find Full Text PDF

Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

High-performance infrared light sources have significantly influenced the fields of photonics and optoelectronics. However, achieving infrared light emission with low energy consumption, high brightness, and rapid response remains a huge challenge. Single-walled carbon nanotubes (SWCNTs) could be an important candidate for infrared light emitters because of their superior electron mobility and phonon transport efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!