Background: Antibiotic treatments are often associated with a late slowdown in bacterial killing. This separates the killing of bacteria into at least two distinct phases: a quick phase followed by a slower phase, the latter of which is linked to treatment success. Current mechanistic explanations for the in vitro slowdown are either antibiotic persistence or heteroresistance. Persistence is defined as the switching back and forth between susceptible and non-susceptible states, while heteroresistance is defined as the coexistence of bacteria with heterogeneous susceptibilities. Both are also thought to cause a slowdown in the decline of bacterial populations in patients and therefore complicate and prolong antibiotic treatments. Reduced bacterial death rates over time are also observed within tuberculosis patients, yet the mechanistic reasons for this are unknown and therefore the strategies to mitigate them are also unknown.

Methods And Findings: We analyse a dose ranging trial for rifampicin in tuberculosis patients and show that there is a slowdown in the decline of bacteria. We show that the late phase of bacterial killing depends more on the peak drug concentrations than the total drug exposure. We compare these to pharmacokinetic-pharmacodynamic models of rifampicin heteroresistance and persistence. We find that the observation on the slow phase's dependence on pharmacokinetic measures, specifically peak concentrations are only compatible with models of heteroresistance and incompatible with models of persistence. The quantitative agreement between heteroresistance models and observations is very good ([Formula: see text]). To corroborate the importance of the slowdown, we validate our results by estimating the time to sputum culture conversion and compare the results to a different dose ranging trial.

Conclusions: Our findings indicate that higher doses, specifically higher peak concentrations may be used to optimize rifampicin treatments by accelerating bacterial killing in the slow phase. It adds to the growing body of literature supporting higher rifampicin doses for shortening tuberculosis treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128972PMC
http://dx.doi.org/10.1371/journal.pcbi.1011000DOI Listing

Publication Analysis

Top Keywords

tuberculosis patients
12
bacterial killing
12
slow phase
8
phase bacterial
8
antibiotic treatments
8
heteroresistance persistence
8
slowdown decline
8
dose ranging
8
peak concentrations
8
bacterial
6

Similar Publications

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The burden is highest in some low- and middle-income countries. One-quarter of the world's population is estimated to have been infected with TB, which is the seedbed for progressing from TB infection to the deadly and contagious disease itself.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) remains a significant global health issue. Drug-resistant TB and comorbidities exacerbate its burden, influencing treatment outcomes and healthcare utilization. Despite the growing prevalence of TB comorbidities, research often focuses on single comorbidities rather than comorbidity patterns.

View Article and Find Full Text PDF

Prevalence of microvascular complications and associated factors among diabetes mellitus patients in Ethiopia: A systematic review and Meta-analysis.

Microvasc Res

December 2024

Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O. box 400, Woldia, Ethiopia; Research Center for Tuberculosis and Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, 0084 Pretoria, South Africa.

Background: Diabetes mellitus (DM) is a metabolic abnormality affecting 537 million people worldwide. Poor glycemic control, longer duration, and poor medication adherence increased the risk of DM complications. Comprehensive evidence on the pooled prevalence of microvascular complications in DM patients in Ethiopia is not available.

View Article and Find Full Text PDF

Pre-existing of pulmonary tuberculosis (PTB) poses increased lung cancer risk, yet the molecular mechanisms remain inadequately understood. This study sought to elucidate the potential mechanisms by performing comprehensive analyses of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from patients with PTB, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). Microarray assays were employed to analyze the DEGs in PBMCs of these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!