A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A framework of interpretable match results prediction in football with FIFA ratings and team formation. | LitMetric

While forecasting football match results has long been a popular topic, a practical model for football participants, such as coaches and players, has not been considered in great detail. In this study, we propose a generalized and interpretable machine learning model framework that only requires coaches' decisions and player quality features for forecasting. By further allowing the model to embed historical match statistics, features that consist of significant information, during the training process the model was practical and achieved both high performance and interpretability. Using five years of data (over 1,700 matches) from the English Premier League, our results show that our model was able to achieve high performance with an F1-score of 0.47, compared to the baseline betting odds prediction, which had an F1-score of 0.39. Moreover, our framework allows football teams to adapt for tactical decision-making, strength and weakness identification, formation and player selection, and transfer target validation. The framework in this study would have proven the feasibility of building a practical match result forecast framework and may serve to inspire future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101499PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284318PLOS

Publication Analysis

Top Keywords

high performance
8
framework
5
model
5
framework interpretable
4
match
4
interpretable match
4
match prediction
4
football
4
prediction football
4
football fifa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!