Skeletal Dysplasia Families: A Stepwise Approach to Diagnosis.

Radiographics

From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.).

Published: May 2023

AI Article Synopsis

  • * Professor Juergen Spranger introduced a diagnostic framework for these disorders, suggesting that different bone dysplasias can be grouped into "families" based on shared skeletal patterns and similar underlying causes.
  • * Recent advancements in genetics and radiology have validated Spranger's concept, allowing radiologists to use a systematic approach for diagnosing skeletal dysplasias by first recognizing a pattern and then analyzing specific features more closely.

Article Abstract

Skeletal dysplasias are a heterogeneous collection of genetic disorders characterized by bone and cartilage abnormalities, and they encompass over 400 disorders. These disorders are rare individually, but collectively they are common (approximate incidence of one in 5000 births). Radiologists occasionally encounter skeletal dysplasias in daily practice. In the 1980s, Professor Juergen Spranger proposed a concept suitable for the diagnosis of skeletal dysplasias termed He stated that different bone dysplasias that share a similar skeletal pattern can be grouped into a "family," the final diagnosis is feasible through the provisional recognition of a pattern followed by a more careful analysis, and families of bone dysplasias may be the result of similar pathogenetic mechanisms. The prototypes of bone dysplasia families include dysostosis multiplex family, achondroplasia family, spondyloepiphyseal dysplasia congenita family, and Larsen syndrome-otopalatodigital syndrome family. Since Spranger's proposal, the concept of bone dysplasia families, along with advancing genetic techniques, has been validated and further expanded. Today, this molecularly proven concept enables a simple stepwise approach to be applied to the radiologic diagnosis of skeletal dysplasias. The first step is the categorization of a given case into a family based on pattern recognition, and the second step is more meticulous observation, such as identification of different severities of the same pattern or subtle but distinctive findings. Since major skeletal dysplasias are limited in number, radiologists can be familiar with the representative patterns of these disorders. The authors describe a stepwise radiologic approach to diagnosing major skeletal dysplasia families and review the clinical and genetic features of these disorders. Published under a CC BY 4.0 license. Quiz questions for this article are available through the Online Learning Center. and

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.220067DOI Listing

Publication Analysis

Top Keywords

skeletal dysplasias
20
dysplasia families
16
diagnosis skeletal
12
skeletal
8
skeletal dysplasia
8
stepwise approach
8
bone dysplasias
8
bone dysplasia
8
major skeletal
8
dysplasias
7

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Background: Whole exome sequencing (WES) technology has been increasingly used for the etiological diagnosis of fetuses with ultrasound anomalies. In this article, we report a novel deletion compound combined with a causative variant in gene leading to short-rib thoracic dysplasia 7 (SRTD7) with or without polydactyly using WES.

Methods: This study involved a Chinese fetus with clinical features of skeletal dysplasia on ultrasound imaging, in whom chromosome abnormalities and copy number variants (CNVs) were detected by chromosomal microarray analysis (CMA), and sequence variants were detected by WES.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.

View Article and Find Full Text PDF

Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!