The present machine learning schema typically uses a one-pass model inference (e.g., forward propagation) to make predictions in the testing phase. It is inherently different from human students who double-check the answer during examinations especially when the confidence is low. To bridge this gap, we propose a learning to double-check (L2D) framework, which formulates double check as a learnable procedure with two core operations: recognizing unreliable predictions and revising predictions. To judge the correctness of a prediction, we resort to counterfactual faithfulness in causal theory and design a contrastive faithfulness measure. In particular, L2D generates counterfactual features by imagining: "what would the sample features be if its label was the predicted class" and judges the prediction by the faithfulness of the counterfactual features. Furthermore, we design a simple and effective revision module to revise the original model prediction according to the faithfulness. We apply the L2D framework to three classification models and conduct experiments on two public datasets for image classification, validating the effectiveness of L2D in prediction correctness judgment and revision.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3264712DOI Listing

Publication Analysis

Top Keywords

learning double-check
8
model prediction
8
l2d framework
8
counterfactual features
8
prediction faithfulness
8
prediction
5
double-check model
4
prediction causal
4
causal perspective
4
perspective machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!