Background: Glucocorticoids affect bone turnover. Little is known about how bone turnover changes when glucocorticoids are discontinued following long-term administration.

Methods: This retrospective observational study was conducted on the relationship between discontinuation of long-term administration of glucocorticoid and bone turnover markers (BTMs) in patients with childhood-onset idiopathic nephrotic syndrome. Serum bone alkaline phosphatase (BAP), intact procollagen type 1 N-terminal propeptide (P1NP), and tartrate-resistant acid phosphatase-5b (TRACP-5b) were evaluated as BTMs.

Results: Thirty-eight pairs of BTMs at glucocorticoid administration and after discontinuation were analyzed in 29 patients. The median age at baseline was 12.4 (interquartile range, 9.0-14.5) years, and the median time from the onset of nephrotic syndrome was 5.9 (3.3-9.7) years. The mean period from prednisolone discontinuation to the measurement of BTMs after glucocorticoid discontinuation was 3.5 ± 1.0 months. Changes in BTMs after glucocorticoid discontinuation were modest when the daily prednisolone dose was < 0.25 mg/kg/day (ln BAP standard deviation [SD] score, p = 0.19; log intact P1NP SD score, p = 0.70; TRACP-5b, p = 0.95). When the daily prednisolone dose was ≥ 0.25 mg/kg/day, all BTMs increased significantly after glucocorticoid discontinuation (ln BAP SD score, p < 0.01; log intact P1NP SD score, p < 0.01; TRACP-5b, p < 0.01).

Conclusions: Decreased BTMs can rise within a few months of discontinuing long-term glucocorticoid administration. When the administered glucocorticoid dose is low, changes in BTMs may be small. A higher resolution version of the Graphical abstract is available as Supplementary information.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00467-023-05966-2DOI Listing

Publication Analysis

Top Keywords

bone turnover
16
nephrotic syndrome
12
btms glucocorticoid
12
turnover markers
8
glucocorticoid administration
8
idiopathic nephrotic
8
retrospective observational
8
observational study
8
glucocorticoid discontinuation
8
glucocorticoid
5

Similar Publications

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Bioceramics for Guided Bone Regeneration: A Multicenter Randomized Controlled Trial.

Clin Implant Dent Relat Res

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Objectives: To compare the clinical effectiveness of a novel bioceramic (BC) with a control xenograft (BO) for guided bone regeneration (GBR) performed simultaneously with implant placement.

Materials And Methods: This clinical study enrolled patients with insufficient bone volume who required GBR during implant placement to increase bone width using either BC or BO. Outcome measures included a dimensional reduction in buccal bone thickness measured by cone beam computed tomography performed immediately post-surgery and at 6 months postoperatively (ΔHBBT), soft tissue healing at 14 days, 1 month, and 6 months postoperatively, and complications rates.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

OI, or bone brittle disease, is characterized by increased mineralization of bone matrix independently of clinical severity. So, a beneficial effect of antiresorptive treatments such as bisphosphonates (BP) is questionable. We aim to compare the bone matrix characteristics before and after BP pamidronate (PAM).

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.

J Mol Med (Berl)

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!