AI Article Synopsis

  • Research explores how water influences the formation of secondary organic aerosols (SOAs) at the molecular level, particularly through ozonolysis of limonene, a common indoor air compound.
  • The study measures the valence electronic properties and ionization energy of limonene aerosols, noting a significant increase in photoelectron yield with added water.
  • It concludes that water alters ozonolysis processes and pathways—working as both a catalyst and reactant—which may affect the atmospheric behavior of these aerosols.

Article Abstract

Although water may affect aqueous aerosol chemistry, how it intervenes in the formation of secondary organic aerosols (SOAs) at the molecular level remains elusive. Ozonolysis of limonene is one of the most important sources of indoor SOAs. Here, we report the valence electronic properties of limonene aerosols and SOAs derived from limonene ozonolysis (Lim-SOAs) via aerosol vacuum ultraviolet photoelectron spectroscopy, with a focus on the effects of water on Lim-SOAs. The first vertical ionization energy of limonene aerosols is measured to be 8.79 ± 0.07 eV. While water significantly increases the total photoelectron yield of Lim-SOAs, three photoelectron features attributable to Lim-SOAs each exhibit distinct dependence on the fraction of water in aerosols, implying that different formation pathways and molecular origins are involved in the formation of Lim-SOAs. Combined with density functional theory calculation and mass spectrometry measurements, this study reveals that water, particularly the water dimer, enhances the formation of Lim-SOAs by altering the ozonolysis energetics and pathways by intervening in its Criegee chemistry, acting as both a catalyst and a reactant. The atmospheric implication is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00560DOI Listing

Publication Analysis

Top Keywords

formation secondary
8
secondary organic
8
organic aerosols
8
ozonolysis limonene
8
photoelectron spectroscopy
8
density functional
8
functional theory
8
aerosols soas
8
limonene aerosols
8
formation lim-soas
8

Similar Publications

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

AXL: shapers of tumor progression and immunosuppressive microenvironments.

Mol Cancer

January 2025

Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.

As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!