Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2023.2198604DOI Listing

Publication Analysis

Top Keywords

starch derivatives
20
glucosidic linkages
20
starch-active transglycosylases
12
α-16 glucosidic
12
derivatives desired
8
desired structures
8
rearrangements glycosidic
8
glycosidic linkages
8
processability functionality
8
α-14 glucosidic
8

Similar Publications

Research progress on processing and nutritional properties of fermented cereals.

J Food Sci Technol

February 2025

Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China.

Unlabelled: Fermented foods, especially those derived from cereals, are significant contributors to the diversification of global diets. As people pay increasing attention to food taste, flavor, and nutritional balance, conducting a comprehensive and integrated evaluation of the role of fermentation technology in cereals has become a top priority. This article reviews relevant research conducted in recent years, summarizing the fermentation conditions of cereals and focusing on the effects of fermentation on the nutritional value and health benefits of cereals, including its impact on basic components such as starch and dietary fiber.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Our objectives were to use a quantitative literature review to explore dietary and feed factors influencing apparent total-tract digestibility of dry matter (DMD), crude protein (CPD), neutral detergent fiber (NDFD), ether extract (EED), non-structural carbohydrates (NSCD), non-fiber carbohydrates (NFCD), and residual organic matter (rOMD) in equine diets, and to assess their contributions to digestible energy (DE) supplies. Data from 54 studies were modeled using linear mixed-effect regressions, with publication as a random effect to account for study variability. For each nutrient, five models were derived with explanatory variables including: dry matter intake (DMI; % BW/day) and DM (% as-fed), and dietary components (CP, organic matter, EE, NDF, acid detergent fiber, NSC, starch, and NFC as % of DM), and feed types (forage, non-forage fiber, legumes, cereal, and oil proportions).

View Article and Find Full Text PDF

High-throughput precision assessment of pea-derived protein products using near infrared hyperspectral imaging.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Bioresource Engineering, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.

This study aims to develop rapid and non-invasive methods based on near-infrared hyperspectral imaging and chemometrics for quantitative prediction of chemical compositions of pea-derived products. Hyperspectral imaging was used to acquire images from pea processing streams, namely pea flour, pea protein concentrate, and pea protein isolate. The PLS algorithm was used to develop quantitative prediction models based on the relationship between the hyperspectral image data and the chemical compositions of the pea products, including moisture, protein, ash, insoluble fiber, and total starch.

View Article and Find Full Text PDF

Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!