Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr00427a | DOI Listing |
Front Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFThe mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States.
Introduction: Anxiety disorders are among the most common mental illnesses in the US. An estimated 31.1% of U.
View Article and Find Full Text PDFAging Brain
December 2024
University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
A growing amount of data has implicated the gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of rs2075650 ('650 on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals.
View Article and Find Full Text PDFiScience
November 2024
School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China.
The van der Waals thiophosphate GaPS presents additional opportunities for gallium-based semiconductors, but limited research on phonon interactions has hindered optimization on thermal properties. This research undertakes a comprehensive investigation into the anharmonic phonon scattering within GaPS. The findings reveal pronounced anharmonic scattering, with both cubic and quartic phonon scatterings significantly influencing phonon redshift and broadening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!