In plant breeding programs, multiple traits are recorded in each trial, and the traits are often correlated. Correlated traits can be incorporated into genomic selection models, especially for traits with low heritability, to improve prediction accuracy. In this study, we investigated the genetic correlation between important agronomic traits in safflower. We observed the moderate genetic correlations between grain yield (GY) and plant height (PH, 0.272-0.531), and low correlations between grain yield and days to flowering (DF, -0.157-0.201). A 4%-20% prediction accuracy improvement for grain yield was achieved when plant height was included in both training and validation sets with multivariate models. We further explored the selection responses for grain yield by selecting the top 20% of lines based on different selection indices. Selection responses for grain yield varied across sites. Simultaneous selection for grain yield and seed oil content (OL) showed positive gains across all sites with equal weights for both grain yield and oil content. Combining g×E interaction into genomic selection (GS) led to more balanced selection responses across sites. In conclusion, genomic selection is a valuable breeding tool for breeding high grain yield, oil content, and highly adaptable safflower varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083426 | PMC |
http://dx.doi.org/10.3389/fgene.2023.1129433 | DOI Listing |
Sci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA. Electronic address:
The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
January 2025
Reports an error in "A grain of truth in the grain size effect: Retrieval practice is more effective when interspersed during learning" by Hilary J. Don, Shaun Boustani, Chunliang Yang and David R. Shanks (, 2024[Nov], Vol 50[11], 1791-1810).
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:
The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!