Scour events can severely change the characteristics of streams and impose detrimental hazards on any structures built on them. The development of robust and accurate devices to monitor scour is therefore essential for studying and developing mitigation strategies for these adverse consequences. This technical note introduces a novel scour-monitoring device that utilizes new advances in the fiber-optic distributed temperature sensing (FO-DTS) technology. The novel FO-DTS scour-monitoring device utilizes the differential thermal responses of sediment, water, and air media to a heating event to accurately identify the locations of the interfaces between them. The performance of the device was tested in a laboratory flume under flow conditions with water velocities ranging from 0 m/s to 0.16 m/s. In addition, the effect of the measurement duration on the device's measurement accuracy was also investigated. The FO-DTS scour-monitoring device managed to detect the sediment-water and water-air interfaces with average absolute errors of 1.60 cm and 0.63 cm, respectively. A measurement duration of fewer than 238 s was sufficient to obtain stable measurements of the locations of the sediment-water and water-air interfaces for all the tested flow conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099223PMC
http://dx.doi.org/10.3390/s23073758DOI Listing

Publication Analysis

Top Keywords

scour-monitoring device
12
fiber-optic distributed
8
distributed temperature
8
temperature sensing
8
device utilizes
8
fo-dts scour-monitoring
8
flow conditions
8
measurement duration
8
sediment-water water-air
8
water-air interfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!