The increased demand for cost-efficient manufacturing and metrology inspection solutions for complex-shaped components in High-Value Manufacturing (HVM) sectors requires increased production throughput and precision. This drives the integration of automated robotic solutions. However, the current manipulators utilizing traditional programming approaches demand specialized robotic programming knowledge and make it challenging to generate complex paths and adapt easily to unique specifications per component, resulting in an inflexible and cumbersome teaching process. Therefore, this body of work proposes a novel software system to realize kinesthetic guidance for path planning in real-time intervals at 250 Hz, utilizing an external off-the-shelf force-torque (FT) sensor. The proposed work is demonstrated on a 500 mm near-net-shaped Wire-Arc Additive Manufacturing (WAAM) complex component with embedded defects by teaching the inspection path for defect detection with a standard industrial robotic manipulator in a collaborative fashion and adaptively generating the kinematics resulting in the uniform coupling of ultrasound inspection. The utilized method proves superior in performance and speed, accelerating the programming time using online and offline approaches by an estimate of 88% to 98%. The proposed work is a unique development, retrofitting current industrial manipulators into collaborative entities, securing human job resources, and achieving flexible production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099101 | PMC |
http://dx.doi.org/10.3390/s23073757 | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of restructuring on the electrocatalyst performance.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China.
Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.
View Article and Find Full Text PDFProc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron
September 2024
Department of Biology, Northeastern University, Boston, MA, USA.
Manipulating flexible and underactuated objects, such as a whip, remains a significant challenge in robotics. Remarkably, humans can skillfully manipulate such objects to achieve tasks, ranging from hitting distant targets to extinguishing a cigarette's in someone's mouth with the tip of a whip. This study explored this problem by constructing and modeling a 25-degree-of-freedom whip.
View Article and Find Full Text PDFNpj Robot
January 2025
Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Single-port surgical robots have gained popularity due to less patient trauma and quicker post-surgery recovery. However, due to limited access provided by a single incision, the miniaturization and maneuverability of these robots still needs to be improved. In this paper, we propose the design of a single-port, dual-arm robotically steerable endoscope containing one steerable major cannula and two steerable minor cannulas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!