In the last decade, research centered around the fault diagnosis of rotating machinery using non-contact techniques has been significantly on the rise. For the first time worldwide, innovative techniques for the diagnosis of rotating machinery, based on electrical motors, including generic, nonlinear, higher-order cross-correlations of spectral moduli of the third and fourth order (CCSM3 and CCSM4, respectively), have been comprehensively validated by modeling and experiments. The existing higher-order cross-correlations of complex spectra are not sufficiently effective for the fault diagnosis of rotating machinery. The novel technology CCSM3 was comprehensively experimentally validated for induction motor bearing diagnosis via motor current signals. Experimental results, provided by the validated technology, confirmed high overall probabilities of correct diagnosis for bearings at early stages of damage development. The novel diagnosis technologies were compared with existing diagnosis technologies, based on triple and fourth cross-correlations of the complex spectra. The comprehensive validation and comparison of the novel cross-correlation technologies confirmed an important non-traditional novel outcome: the technologies based on cross-correlations of spectral moduli were more effective for damage diagnosis than the technologies based on cross-correlations of the complex spectra. Experimental and simulation validations confirmed a high probability of correct diagnosis via the CCSM at the early stage of fault development. The average total probability of incorrect diagnosis for the CCSM3 for all experimental results of 8 tested bearings, estimated via 6528 diagnostic features, was 1.475%. The effectiveness gains in the total probability of incorrect diagnosis for the CCSM3 in comparison with the CCCS3 were 26.8 for the experimental validation and 18.9 for the simulation validation. The effectiveness gains in the Fisher criterion for the CCSM3 in comparison with the CCCS3 were 50.7 for the simulation validation and 104.7 for the experimental validation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098575 | PMC |
http://dx.doi.org/10.3390/s23073731 | DOI Listing |
Sensors (Basel)
December 2024
School of Data Science and Technology, North University of China, Taiyuan 030051, China.
Blades are the core components of rotating machinery, and the blade vibration status directly impacts the working efficiency and safe operation of the equipment. The blade tip timing (BTT) technique provides a solution for blade vibration monitoring and is currently a prominent topic in research on blade vibration issues. Nevertheless, the non-stationary factors present in actual engineering applications introduce inaccuracies in the BTT technique, resulting in blade vibration measurement errors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
Rolling bearings are critical rotating components in machinery and equipment; they are essential for the normal operation of such systems. Consequently, there is a pressing need for a highly efficient, applicable, and reliable method for bearing fault diagnosis. Currently, one-dimensional data-driven fault diagnosis methods, which rely on one-dimensional data, represent a mainstream approach in this field.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Faculty of Information Engineering, Quzhou College of Technology, Quzhou 324000, China.
Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832003, China.
In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Power Engineering, Naval University of Engineering, Wuhan, 430033, Hubei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!