Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a novel methodology that estimates the wind profile within the ABL by using a neural network along with predictions from a mesoscale model in conjunction with a single near-surface measurement. A major advantage of this solution compared to other solutions available in the literature is that it requires only near-surface measurements for prediction once the neural network has been trained. An additional advantage is the fact that it can be potentially used to explore the time evolution of the wind profile. Data collected by a LiDAR sensor located at the University of León (Spain) is used in the present research. The information obtained from the wind profile is valuable for multiple applications, such as preliminary calculations of the wind asset or CFD modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098768 | PMC |
http://dx.doi.org/10.3390/s23073715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!