An Improved YOLOv5-Based Underwater Object-Detection Framework.

Sensors (Basel)

School of Applied Science and Technology, Hainan University, Haikou 570228, China.

Published: April 2023

To date, general-purpose object-detection methods have achieved a great deal. However, challenges such as degraded image quality, complex backgrounds, and the detection of marine organisms at different scales arise when identifying underwater organisms. To solve such problems and further improve the accuracy of relevant models, this study proposes a marine biological object-detection architecture based on an improved YOLOv5 framework. First, the backbone framework of Real-Time Models for object Detection (RTMDet) is introduced. The core module, Cross-Stage Partial Layer (CSPLayer), includes a large convolution kernel, which allows the detection network to precisely capture contextual information more comprehensively. Furthermore, a common convolution layer is added to the stem layer, to extract more valuable information from the images efficiently. Then, the BoT3 module with the multi-head self-attention (MHSA) mechanism is added into the neck module of YOLOv5, such that the detection network has a better effect in scenes with dense targets and the detection accuracy is further improved. The introduction of the BoT3 module represents a key innovation of this paper. Finally, union dataset augmentation (UDA) is performed on the training set using the Minimal Color Loss and Locally Adaptive Contrast Enhancement (MLLE) image augmentation method, and the result is used as the input to the improved YOLOv5 framework. Experiments on the underwater datasets URPC2019 and URPC2020 show that the proposed framework not only alleviates the interference of underwater image degradation, but also makes the mAP@0.5 reach 79.8% and 79.4% and improves the mAP@0.5 by 3.8% and 1.1%, respectively, when compared with the original YOLOv8 on URPC2019 and URPC2020, demonstrating that the proposed framework presents superior performance for the high-precision detection of marine organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099368PMC
http://dx.doi.org/10.3390/s23073693DOI Listing

Publication Analysis

Top Keywords

detection marine
8
marine organisms
8
improved yolov5
8
yolov5 framework
8
detection network
8
bot3 module
8
urpc2019 urpc2020
8
proposed framework
8
framework
6
detection
6

Similar Publications

Targeted and untargeted discovery of UV filters and emerging contaminants with environmental risk assessment on the Northwestern Mediterranean coast.

Mar Pollut Bull

January 2025

Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France. Electronic address:

Marine ecosystems, particularly coastal areas, are becoming increasingly vulnerable to pollution from human activities. Persistent organic pollutants and contaminants of emerging concern (CECs) are recognized as significant threats to both human and environmental health. Our study aimed to identify the molecules present in the seawater of two bathing areas in the Western Mediterranean Sea.

View Article and Find Full Text PDF

This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.

View Article and Find Full Text PDF

An online segmented continuous flow analysis system for rapid determining chemical oxygen demand in seawater to assess organic pollution levels.

Mar Pollut Bull

January 2025

Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China. Electronic address:

By integrating ultraviolet (UV) photocatalytic oxidation digestion with segmented continuous flow analysis technology, an online measurement method and analysis system for the alkaline chemical oxygen demand (COD) in seawater, based on the color-change reaction of potassium permanganate, has been established. This represents the first application of UV photocatalytic oxidation technology in the measurement of COD in seawater. The system effectively overcomes the limitations of high-temperature and high-pressure digestion methods employed in traditional COD analysis.

View Article and Find Full Text PDF

Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens.

J Hazard Mater

January 2025

Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil.

We investigated MP ingestion in lanternfishes (Myctophidae), one of the most abundant vertebrates in the world, using archived specimens from museum collections from 1999 to 2017. Microplastics were detected in 55 % of the 1167 specimens analysed (0.95 ± 1.

View Article and Find Full Text PDF

Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds.

J Hazard Mater

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!