The design process of an integrated bandpass filter targeted for the noise filtering stage of the synchronous demodulation unit of an electric field mill sensor interface is presented. The purpose of this study of filter integration techniques is to avoid the challenging and, in some cases, impossible passive element integration process and to incorporate the final filter design in an entirely integrated field mill sensing system with superior performance and an optimized silicon-to-cost ratio. Four different CMOS filter implementations in the 0.18 μm process of XFAB, using OTA (Operational Transconductance Amplifier)-based configurations for passive element replacement in cascaded filter topologies and leapfrog techniques, are compared in terms of noise performance, total harmonic distortion, dynamic range, and power consumption, as well as in terms of integrability, silicon area, and performance degradation at process corners/mismatches. The optimum filter design performance-wise and process-wise is included in the final design of the integrated analog readout of a field mill sensor, and post-layout simulation results of the total circuit are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099353PMC
http://dx.doi.org/10.3390/s23073688DOI Listing

Publication Analysis

Top Keywords

field mill
16
filter design
12
mill sensor
12
sensor interface
8
passive element
8
filter
6
design
5
integrated
4
integrated filter
4
design analog
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!