Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Weeds are one of the most harmful agricultural pests that have a significant impact on crops. Weeds are responsible for higher production costs due to crop waste and have a significant impact on the global agricultural economy. The importance of this problem has promoted the research community in exploring the use of technology to support farmers in the early detection of weeds. Artificial intelligence (AI) driven image analysis for weed detection and, in particular, machine learning (ML) and deep learning (DL) using images from crop fields have been widely used in the literature for detecting various types of weeds that grow alongside crops. In this paper, we present a systematic literature review (SLR) on current state-of-the-art DL techniques for weed detection. Our SLR identified a rapid growth in research related to weed detection using DL since 2015 and filtered 52 application papers and 8 survey papers for further analysis. The pooled results from these papers yielded 34 unique weed types detection, 16 image processing techniques, and 11 DL algorithms with 19 different variants of CNNs. Moreover, we include a literature survey on popular vanilla ML techniques (e.g., SVM, random forest) that have been widely used prior to the dominance of DL. Our study presents a detailed thematic analysis of ML/DL algorithms used for detecting the weed/crop and provides a unique contribution to the analysis and assessment of the performance of these ML/DL techniques. Our study also details the use of crops associated with weeds, such as sugar beet, which was one of the most commonly used crops in most papers for detecting various types of weeds. It also discusses the modality where RGB was most frequently used. Crop images were frequently captured using robots, drones, and cell phones. It also discusses algorithm accuracy, such as how SVM outperformed all machine learning algorithms in many cases, with the highest accuracy of 99 percent, and how CNN with its variants also performed well with the highest accuracy of 99 percent, with only VGGNet providing the lowest accuracy of 84 percent. Finally, the study will serve as a starting point for researchers who wish to undertake further research in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098587 | PMC |
http://dx.doi.org/10.3390/s23073670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!