Railway switches and crossings (S&C) are among the most important high-value components in a railway network and a failure of such an asset could result in severe network disturbance. Therefore, potential defects need to be detected at an early stage to prevent traffic-disturbing downtime or even severe accidents. A squat is a common defect of S&Cs that has to be monitored and repaired to reduce such risks. In this study, a testbed including a full-scale S&C and a bogie wagon was developed. Vibrations were measured for different squat sizes by an accelerometer mounted at the point machine. A method of processing the vibration data and the speed data is proposed to investigate the possibility of detecting and quantifying the severity of a squat. One key technology used is wavelet denoising. The study shows that it is possible to monitor the development of the squat size on the rail up to around 13 m from the point machine. The relationships between the normalised peak-to-peak amplitude of the vibration signal and the squat depth were also estimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098786 | PMC |
http://dx.doi.org/10.3390/s23073666 | DOI Listing |
J Youth Adolesc
January 2025
Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, 21944, Taif, Saudi Arabia.
This study investigates the use of machine learning models to predict solubility of rivaroxaban in binary solvents based on temperature (T), mass fraction (w), and solvent type. Using a dataset with over 250 data points and including solvents encoded with one-hot encoding, four models were compared: Gradient Boosting (GB), Light Gradient Boosting (LGB), Extra Trees (ET), and Random Forest (RF). The Jellyfish Optimizer (JO) algorithm was applied to tune hyperparameters, enhancing model performance.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Department of Psychology, Emory University, Atlanta, Georgia.
Major Depressive Disorder (MDD) is a prevalent mental health condition that often begins in adolescence, with significant long-term implications. Indicated prevention programs targeting adolescents with mild symptoms have shown efficacy, yet the methods for identifying at-risk individuals need improvement. This study aims to evaluate the utility of Partial Least Squares Regression (PLSR) in predicting the onset of MDD among non-depressed adolescents, compared to traditional screening methods.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia.
Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).
Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.
Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!