Multi-Phase Fusion for Pedestrian Localization Using Mass-Market GNSS and MEMS Sensors.

Sensors (Basel)

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: March 2023

Precise pedestrian positioning based on smartphone-grade sensors has been a research hotspot for several years. Due to the poor performance of the mass-market Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors, the standalone pedestrian dead reckoning (PDR) module cannot avoid long-time heading drift, which leads to the failure of the entire positioning system. In outdoor scenes, the Global Navigation Satellite System (GNSS) is one of the most popular positioning systems, and smartphone users can use it to acquire absolute coordinates. However, the smartphone's ultra-low-cost GNSS module is limited by some components such as the antenna, and so it is susceptible to serious interference from the multipath effect, which is a main error source of smartphone-based GNSS positioning. In this paper, we propose a multi-phase GNSS/PDR fusion framework to overcome the limitations of standalone modules. The first phase is to build a pseudorange double-difference based on smartphone and reference stations, the second phase proposes a novel multipath mitigation method based on multipath partial parameters estimation (MPPE) and a Double-Difference Code-Minus-Carrier (DDCMC) filter, and the third phase is to propose the joint stride lengths and heading estimations of the two standalone modules, to reduce the long-time drift and noise. The experimental results demonstrate that the proposed multipath error estimation can effectively suppress the double-difference multipath error exceeding 4 m, and compared to other methods, our fusion method achieves a minimum error RMSE of 1.63 m in positioning accuracy, and a minimum error RMSE of 4.71 m in long-time robustness for 20 min of continuous walking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099076PMC
http://dx.doi.org/10.3390/s23073624DOI Listing

Publication Analysis

Top Keywords

standalone modules
8
multipath error
8
minimum error
8
error rmse
8
positioning
5
multipath
5
error
5
multi-phase fusion
4
fusion pedestrian
4
pedestrian localization
4

Similar Publications

This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules.

View Article and Find Full Text PDF

The iPhylo suite: an interactive platform for building and annotating biological and chemical taxonomic trees.

Brief Bioinform

November 2024

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China.

Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.

View Article and Find Full Text PDF

Objective: To present the clinical result of spinal fixation system made entirely of Carbon-Fiber-Reinforced (CFR)-Hybrid Polyaryl-Ether-Ether-Ketone (PEEK).

Summary Of Background Data: Fusion surgery has been used to treat chronic low back pain caused by degenerative disk disease (DDD). The traditional pedicle screw system made of titanium, though biocompatible, can lead to complications, such as stress shielding and implant failure.

View Article and Find Full Text PDF

A stand-alone and point-of-care electrochemical immuno-device for Salmonella typhimurium testing.

Talanta

December 2024

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China. Electronic address:

The rapid development of accurate and point-of-care diagnostic tools for foodborne diseases has made a massive impact in global health. Salmonella typhimurium (S. typhimurium) exemplifies an enteric pathogen, being a gram-negative bacteria responsible for several gastrointestinal and systemic illnesses.

View Article and Find Full Text PDF
Article Synopsis
  • The Submerged Microscope for Observing Substrates (SuMOS) is a budget-friendly underwater camera system designed to capture processes on aquatic surfaces using a Raspberry Pi Zero 2 W and an IR-enabled camera.
  • It features a waterproof housing that allows for autonomous operation and high-resolution image capture in low-light conditions, tested successfully in the Choptank River, Maryland.
  • SuMOS offers a scalable and efficient solution for studying aquatic environments, boasting benefits such as affordability, ease of use, and effective data collection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!