The safety of ultrasound exposure is very important for a patient's well-being. High-frequency (1-10 MHz) ultrasound waves are highly absorbed by biological tissue and have limited therapeutic effects on internal organs. This article presents the results of the development and application of a low-frequency (20-100 kHz) ultrasonic transducer for sonication of biological tissues. Using the methodology of digital twins, consisting of virtual and physical twins, an ultrasonic transducer has been developed that emits a focused ultrasound signal that penetrates into deeper biological tissues. For this purpose, the ring-shaped end surface of this transducer is excited not only by the main longitudinal vibrational mode, which is typical of the flat end surface transducers used to date, but also by higher mode radial vibrations. The virtual twin simulation shows that the acoustic signal emitted by the ring-shaped transducer, which is excited by a higher vibrational mode, is concentrated into a narrower and more precise acoustic wave that penetrates deeper into the biological tissue and affects only the part of the body to be treated, but not the whole body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098853PMC
http://dx.doi.org/10.3390/s23073608DOI Listing

Publication Analysis

Top Keywords

ultrasonic transducer
12
biological tissue
12
biological tissues
8
penetrates deeper
8
deeper biological
8
transducer excited
8
vibrational mode
8
transducer
5
biological
5
development low-frequency
4

Similar Publications

Objective: To evaluate the added value of dynamic contrast-enhanced ultrasound (DCE-US) analysis in pre-operative differential diagnosis of small (≤20 mm) solid pancreatic lesions (SPLs).

Methods: In this retrospective study, patients with biopsy or surgerical resection and histopathologically confirmed small (≤20 mm) SPLs were included. One wk before biopsy/surgery, pre-operative B-mode ultrasound and contrast-enhanced ultrasound were performed.

View Article and Find Full Text PDF

The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%).

View Article and Find Full Text PDF

Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

Nat Commun

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.

View Article and Find Full Text PDF

High-Performance Shear Mode Ultrasonic Transducer Operating at Ultrahigh Temperature Fabricated with BiSiO Piezoelectric Crystal.

ACS Appl Mater Interfaces

December 2024

Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.

Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.

View Article and Find Full Text PDF

Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!