Imaging protein-protein interactions (PPIs) is a hot topic in molecular medicine in the postgenomic sequencing era. In the present study, we report bright and highly sensitive single-chain molecular strain probe templates which embed full-length luciferase 8.6-535SG (RLuc86SG) or Artificial luciferase 49 (ALuc49) as reporters. These reporters were deployed between FKBP-rapamycin binding domain (FRB) and FK506-binding protein (FKBP) as a PPI model. This unique molecular design was conceptualized to exploit molecular strains of the sandwiched reporters appended by rapamycin-triggered intramolecular PPIs. The ligand-sensing properties of the templates were maximized by interface truncations and substrate modulation. The highest fold intensities, 9.4 and 16.6, of the templates were accomplished with RLuc86SG and ALuc49, respectively. The spectra of the templates, according to substrates, revealed that the colors are tunable to blue, green, and yellow. The putative substrate-binding chemistry and the working mechanisms of the probes were computationally modeled in the presence or absence of rapamycin. Considering that the molecular strain probe templates are applicable to other PPI models, the present approach would broaden the scope of the bioassay toolbox, which harnesses the privilege of luciferase reporters and the unique concept of the molecular strain probes into bioassays and molecular imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098686 | PMC |
http://dx.doi.org/10.3390/s23073498 | DOI Listing |
Int J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Department of Medicine, Division of Clinical Infectious Diseases, Showa University School of Medicine, Tokyo, Japan.
Objectives: In Pseudomonas aeruginosa isolates, emerging meropenem resistance beyond imipenem resistance has become a problem. In this study, we aimed to investigate the relationship between the in vivo acquisition of antimicrobial resistance in fluoroquinolone- and carbapenem-resistant P. aeruginosa clinical isolates, the underlying molecular mechanisms, and exposure to antimicrobial agents.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, USA.
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.
View Article and Find Full Text PDFComput Biol Chem
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan. Electronic address:
A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!