Potato thermoplastic starch (TPS) containing 1 wt.% of pure halloysite (HNT), glycerol-modified halloysite (G-HNT) or polyester plasticizer-modified halloysite (PP-HNT) was prepared by melt-extrusion. Halloysites were characterized by FTIR, SEM, TGA, and DSC. Interactions between TPS and halloysites were studied by FTIR, SEM, and DMTA. The Vicat softening temperature, tensile, and flexural properties were also determined. FTIR proved the interactions between halloysite and the organic compound as well as between starch, plasticizers and halloysites. Pure HNT had the best thermal stability, but PP-HNT showed better thermal stability than G-HNT. The addition of HNT and G-HNT improved the TPS's thermal stability, as evidenced by significantly higher T. Modified TPS showed higher a Vicat softening point, suggesting better hot water resistance. Halloysite improved TPS stiffness due to higher storage modulus. However, TPS/PP-HNT had the lowest stiffness, and TPS/HNT the highest. Halloysite increased T and lowered T due to its simultaneous reinforcing and plasticizing effect. TPS/HNT showed an additional β-relaxation peak, suggesting the formation of a new crystalline phase. The mechanical properties of TPS were also improved in the presence of both pure and modified halloysites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097106PMC
http://dx.doi.org/10.3390/polym15071762DOI Listing

Publication Analysis

Top Keywords

thermal stability
12
potato thermoplastic
8
thermoplastic starch
8
ftir sem
8
vicat softening
8
halloysite
6
tps
5
morphology selected
4
selected properties
4
properties modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!