Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw materials, the catalyst dosage, and the different co-solvents on the properties of the prepared curing agent were systematically explored. The infrared absorption spectra of E20, EP1K, and the water-based epoxy curing agent were compared and analyzed. The coating properties of the waterborne epoxy varnish, which was based on water-based epoxy curing agents to emulsify and cure the resin E44, were systematically tested. The results demonstrated that with a molar ratio of 1:1:4 of PEG1000, E20, and MXDA, the boron trifluoride etherate (BF·EtO) as catalyst accounts for 0.3% of the total mass of E20 and PEG1000, and an applicable period of 3 h for the prepared varnish, the anti-corrosion performance, and mechanical properties of the coatings were excellent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097019PMC
http://dx.doi.org/10.3390/polym15071673DOI Listing

Publication Analysis

Top Keywords

epoxy curing
16
curing agent
16
water-based epoxy
12
waterborne epoxy
8
molar ratio
8
epoxy
6
curing
5
preliminary preparation
4
preparation performance
4
performance self-emulsifying
4

Similar Publications

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help in determining the method for its manufacturing.

View Article and Find Full Text PDF

Bonding materials with high thermal and electrical conductivity and reliable resistance to thermal stress are required. The authors have been conducting fundamental research on sintering-type bonding, in which metal micro-fillers are low-temperature sintered in the resin-bonded type electrically conductive adhesives (ECAs), as a new bonding technology, with the aim of easing thermal stress through the resin binder. This study investigated the influence of the kind of additive diluent in epoxy-based ECAs containing silver (Ag) micro-flakes on the microstructure development in the adhesives and the connection properties to metal electrodes.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin greener than the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners that enable, under mild thermo-chemical conditions, the total recycling of the composite material through the recovery of the fiber and matrix as a thermoplastic. This research addressed the characterization, processability, and recyclability of a new commercial cleavable bio-resin formulation (designed by the R-Concept company) that can be used in the fabrication of fully recyclable polymer composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!