The commercial thin-film composite (TFC) nanofiltration (NF) membrane is unsuitable for engineered osmosis processes because of its thick non-woven fabric and semi-hydrophilic substrate that could lead to severe internal concentration polarization (ICP). Hence, we fabricated a new type of NF-like TFC membrane using a hydrophilic coated polyacrylonitrile/polyphenylsulfone (PAN/PPSU) substrate in the absence of non-woven fabric, aiming to improve membrane performance for water and wastewater treatment via the engineered osmosis process. Our results showed that the substrate made of a PAN/PPSU weight ratio of 1:5 could produce the TFC membrane with the highest water flux and divalent salt rejection compared to the membranes made of different PAN/PPSU substrates owing to the relatively good compatibility between PAN and PPSU at this ratio. The water flux of the TFC membrane was further improved without compromising salt rejection upon the introduction of a hydrophilic polydopamine (PDA) coating layer containing 0.5 g/L of graphene oxide (PDA/GO0.5) onto the bottom surface of the substrate. When tested using aerobically treated palm oil mill effluent (AT-POME) as a feed solution and 4 M MgCl as a draw solution, the best performing TFC membrane with the hydrophilic coating layer achieved a 67% and 41% higher forward osmosis (FO) and pressure retarded osmosis (PRO) water flux, respectively, compared to the TFC membrane without the coating layer. More importantly, the coated TFC membrane attained a very high color rejection (>97%) during AT-POME treatment, while its water flux and reverse solute flux were even better compared to the commercial NF90 and NF270 membranes. The promising outcomes were attributed to the excellent properties of the PAN/PPSU substrate that was coated with a hydrophilic PDA/GO coating and the elimination of the thick non-woven fabric during TFC membrane fabrication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097338PMC
http://dx.doi.org/10.3390/polym15071665DOI Listing

Publication Analysis

Top Keywords

tfc membrane
28
water flux
16
engineered osmosis
12
non-woven fabric
12
coating layer
12
membrane
9
thin-film composite
8
water wastewater
8
wastewater treatment
8
treatment engineered
8

Similar Publications

A Review of Sulfate Removal from Water Using Polymeric Membranes.

Membranes (Basel)

January 2025

Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada.

Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths.

View Article and Find Full Text PDF

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Nanomorphogenesis of interlayered polyamide membranes for precise ion sieving in lithium extraction.

Water Res

December 2024

Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:

Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!