Rice husk biochar (RHB) is a low-cost and renewable resource that has been found to be highly effective for the remediation of water and soil environments. Its yield, structure, composition, and physicochemical properties can be modified by changing the parameters of the preparation process, such as the heating rate, pyrolysis temperature, and carrier gas flow rate. Additionally, its specific surface area and functional groups can be modified through physical, chemical, and biological means. Compared to biochar from other feedstocks, RHB performs poorly in solutions with coexisting metal, but can be modified for improved adsorption. In contaminated soils, RHB has been found to be effective in adsorbing heavy metals and organic matter, as well as reducing pollutant availability and enhancing crop growth by regulating soil properties and releasing beneficial elements. However, its effectiveness in complex environments remains uncertain, and further research is needed to fully understand its mechanisms and effectiveness in environmental remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096505 | PMC |
http://dx.doi.org/10.3390/plants12071524 | DOI Listing |
Sci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Starkville, MS 39762, USA.
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architecture, Faculty of Science and Technology, Tokyo University of Science, Noda City 278-8510, Japan.
A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!