Grain shape is one of the key factors deciding the yield product and the market value as appearance quality in rice ( L.). The grain shape of cultivars in Korea is quite monotonous because the selection pressure of rice breeding programs works in consideration of consumer preference. In this study, we identified QTLs associated with grain shape to improve the variety of grain shapes in Korean cultivars. QTL analysis revealed that eight QTLs related to five tested traits were detected on chromosomes 2, 5, and 10. Among them, three QTLs- (33.9% of PEV for grain length), (64.42% for grain width), and (49.2% for grain thickness)-were regarded as the main effect QTLs. Using the three QTLs, an ideal QTL combination ( + + ) could be constructed on the basis of the accumulated QTL effect without yield loss caused by the change in grain shape in the population. In addition, three promising lines with a slender grain type were selected as a breeding resource with a genetic background based on the QTL combination. The application of QTLs detected in this study could improve the grain shape of cultivars without any linkage drag or yield loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097285PMC
http://dx.doi.org/10.3390/plants12071513DOI Listing

Publication Analysis

Top Keywords

grain shape
24
yield loss
12
grain
11
improve grain
8
shape cultivars
8
qtl combination
8
shape
6
qtls
5
application novel
4
novel quantitative
4

Similar Publications

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

Pollen and Stigma Morphology, Pollen Viability and Stigma Receptivity of Wittmackia Species (Bromeliaceae) by Light, Fluorescence and Scanning Electron Microscopy.

Microsc Res Tech

January 2025

Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.

The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.

View Article and Find Full Text PDF

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.

View Article and Find Full Text PDF

In this work, the rare earth element Ce was incorporated into the A-site of SrBaNbO ferroelectric ceramics, which was prepared using the conventional solid state reaction method and sintered under different procedures. A comprehensive investigation was conducted to assess the impact of Ce doping and varying sintering procedures on both the relaxor characteristics and electrical properties of the ceramics. When sintered at 1300 °C for 4 h, the grains exhibited an isometric shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!