Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by by Remodeling the Rhizospheric Environment.

Plants (Basel)

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Published: March 2023

Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant-soil systems remain unknown. In this study, different GABA dosages (0-8 g kg) were added to the rhizosphere of grown in Cd-contaminated soils. Cd accumulation in the shoots of was enhanced by 38.9-159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in . The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially and , were recruited under GABA treatment to assist Cd phytoextraction in . This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant-soil systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096890PMC
http://dx.doi.org/10.3390/plants12071484DOI Listing

Publication Analysis

Top Keywords

rhizospheric environment
12
gamma-aminobutyric acid
8
plant-soil systems
8
gaba treatment
8
gaba
7
acid enhances
4
enhances cadmium
4
cadmium phytoextraction
4
phytoextraction remodeling
4
remodeling rhizospheric
4

Similar Publications

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF

Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate.

View Article and Find Full Text PDF

Microbial Biotic Associations Dominated Adaptability Differences of Dioecious Poplar Under Salt Stress.

Plant Cell Environ

January 2025

Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.

How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.

View Article and Find Full Text PDF

To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.

View Article and Find Full Text PDF

Roughly 10 % of the world's arable land is affected by salinization, which significantly reducing crop yields, degrading soil health, and posing a serious threat to food security and ecological stability. High-efficient water-saving irrigation (HEI) technologies have showed positive effects on crop yield, especially with long-term application in salinized soil fields. However, the microbial mechanisms and influential pathways that promote crop yield and reduce salinity under consecutive HEI remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!