Tree peony is a "spring colored-leaf" plant which has red leaves in early spring, and the red color of the leaves usually fades in late spring. Flavonols are one subgroup of flavonoids, and they affect the plant organs' color as co-pigments of anthocyanins. To investigate the color variation mechanism of leaves in tree peony, , one flavonol biosynthesis-related MYB gene was isolated from and characterized. PqMYBF1 contained the SG7 and SG7-2 motifs which are unique in flavonol-specific MYB regulators. Subcellular localization and transactivation assay showed that PqMYBF1 localized to the nucleus and acted as a transcriptional activator. The ectopic expression of in transgenic tobacco caused an observable increase in flavonol level and the anthocyanin accumulation was decreased significantly, resulting in pale pink flowers. Dual-luciferase reporter assays showed that PqMYBF1 could activate the promoters of , and . These results suggested that PqMYBF1 could promote flavonol biosynthesis by activating and expression, which leads metabolic flux from anthocyanin to flavonol pathway, resulting in more flavonol accumulation. These findings provide a new train of thought for the molecular mechanism of leaf color variation in tree peony in spring, which will be helpful for the molecular breeding of tree peony with colored foliage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096829 | PMC |
http://dx.doi.org/10.3390/plants12071427 | DOI Listing |
BMC Genomics
January 2025
College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
College of Landscape Architecture and Art, Henan Agricultural University, 450002, Zhengzhou, China. Electronic address:
Sucrose is an essential energy substance for tree peony (Paeonia Suffruticosa) floral organ development. However, little is known about the sucrose regulatory network in tree peony. In this study, the promoter sequence of the tree peony sucrose transporter gene PsSUT2 was cloned.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450046, China.
Paeonia suffruticosa is a plant of Paeonia in Paeoniaceae. It is an important woody ornamental flower in the world. High temperature in summer hinders the growth of tree peony and reduces its ornamental quality, which restricts the cultivation and application of tree peony in Jiangnan area of China.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Rd., Songjiang District, Shanghai 201602, China.
Research on the waterlogging tolerance mechanisms of helps us to further understand these mechanisms in the root system and enhance its root bark and oil yields in southern China. In this study, root morphological identification, the statistics of nine physiological and biochemical indicators, and a comparative transcriptome analysis were used to investigate the waterlogging tolerance mechanism in this plant. As flooding continued, the roots' vigor dramatically declined from 6 to 168 h of waterlogging, the root number was extremely reduced by up to 95%, and the number of roots was not restored after 96 h of recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!