A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature. | LitMetric

Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature.

Molecules

Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Published: April 2023

Near-infrared spectrophotometry and partial least squares regression (PLSR) were evaluated to create a pleasantly simple yet effective approach for measuring HNO concentration with varying temperature levels. A training set, which covered HNO concentrations (0.1-8 M) and temperature (10-40 °C), was selected using a D-optimal design to minimize the number of samples required in the calibration set for PLSR analysis. The top D-optimal-selected PLSR models had root mean squared error of prediction values of 1.4% for HNO and 4.0% for temperature. The PLSR models built from spectra collected on static samples were validated against flow tests including HNO concentration and temperature gradients to test abnormal conditions (e.g., bubbles) and the model performance between sample points in the factor space. Based on cross-validation and prediction modeling statistics, the designed near-infrared absorption approach can provide remote, quantitative analysis of HNO concentration and temperature for production-oriented applications in facilities where laser safety challenges would inhibit the implementation of other optical techniques (e.g., Raman spectroscopy) and in which space, time, and/or resources are constrained. The experimental design approach effectively minimized the number of samples in the training set and maintained or improved PLSR model performance, which makes the described chemometric approach more amenable to nuclear field applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096128PMC
http://dx.doi.org/10.3390/molecules28073224DOI Listing

Publication Analysis

Top Keywords

concentration temperature
12
hno concentration
12
partial squares
8
experimental design
8
near-infrared spectrophotometry
8
training set
8
number samples
8
plsr models
8
model performance
8
temperature
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!