Some of the most important transformations in organic chemistry are rearrangement reactions, which play a crucial role in increasing synthetic efficiency and molecular complexity. The development of synthetic strategies involving rearrangement reactions, which can accomplish synthetic goals in a very efficient manner, has been an evergreen topic in the synthetic chemistry community. Xanthenes, pyridin-2(1)-ones, and 1,6-naphthyridines have a wide range of biological activities. In this work, we propose the thermal rearrangement of 7,9-dihalogen-substituted 5-(2-hydroxy-6-oxocyclohexyl)-5-chromeno[2,3-]pyridines in DMSO. Previously unknown 5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1-xanthen-9-yl)-6-oxo-1,6-dihydropyridines and 10-(3,5-dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[][1,6]naphthyridines were synthesized with excellent yields (90-99%). The investigation of the transformation using H-NMR monitoring made it possible to confirm the ANRORC mechanism. The structures of synthesized compounds were confirmed by 2D-NMR spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095857PMC
http://dx.doi.org/10.3390/molecules28073139DOI Listing

Publication Analysis

Top Keywords

thermal rearrangement
8
rearrangement reactions
8
rearrangement 5-2-hydroxy-6-oxocyclohexyl-5-chromeno[23-]pyridines
4
5-2-hydroxy-6-oxocyclohexyl-5-chromeno[23-]pyridines transformations
4
transformations organic
4
organic chemistry
4
chemistry rearrangement
4
reactions play
4
play crucial
4
crucial role
4

Similar Publications

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Effect of temperature on circadian clock functioning of trees in the context of global warming.

New Phytol

January 2025

Instituto de Investigaciones Forestales y Agropecuarias Bariloche, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Bariloche - Consejo Nacional de Investigaciones Científicas y Técnicas (INTA EEA Bariloche-CONICET), San Carlos de Bariloche, Río Negro, R8403DVZ, Argentina.

Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.

View Article and Find Full Text PDF

Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.

View Article and Find Full Text PDF

Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).

View Article and Find Full Text PDF

Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!