Piezoelectric Nanogenerators Fabricated Using Spin Coating of Poly(vinylidene fluoride) and ZnO Composite.

Nanomaterials (Basel)

Department of Semiconductor Electronic Engineering, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.

Published: April 2023

In this context, the open-circuit voltage generated by either poly (vinylidene fluoride) or PVDF and ZnO composite sample before being enhanced to 4.2 V compared to 1.2 V for the samples of pure PVDF. The spin coating method was used to create a composite film, which served as a piezoelectric nanogenerator (PNG). Zinc oxide (ZnO) nanoparticles and PVDF serve as the matrix for the coating structure. Thin films were created that employed the spin coating method to achieve the desired results of ZnO's non-brittle outcome and piezoelectric characteristics, as well as PVDF for use in self-powered devices. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and fourier transform infrared (FT-IR) were used to evaluate the properties of these formations. The electrical properties of the film were measured using an oscilloscope. Results indicated that by adding ZnO nanoparticles to the PVDF samples, piezoelectric capabilities were enhanced compared to samples containing PVDF only. These results point to promising uses for various wearable devices, such as water strider robot systems and self-operating equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096930PMC
http://dx.doi.org/10.3390/nano13071289DOI Listing

Publication Analysis

Top Keywords

spin coating
12
zno composite
8
enhanced compared
8
compared samples
8
coating method
8
zno nanoparticles
8
nanoparticles pvdf
8
pvdf
6
piezoelectric
4
piezoelectric nanogenerators
4

Similar Publications

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.

View Article and Find Full Text PDF

Cd(Se,Te) photovoltaics (PV) are the most widely deployed thin-film solar technology globally, yet continued efficiency improvements are stymied by challenges at the device hole contacts. The inclusion of solution-processed oxide layers such as AlGaO in the contact stack has yielded improved device open-circuit voltages () and fill factors (FF). However, contradictory mechanisms by which these layers improve the device properties have been proposed by the research community.

View Article and Find Full Text PDF

Enhanced Efficiency and Stability in Blade-Coated Perovskite Solar Cells through Using 2,3,4,5,6-Pentafluorophenylethylammonium Halide Additives.

ACS Appl Mater Interfaces

January 2025

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.

The power conversion efficiency (PCE) of perovskite solar cells is sensitive to their method of fabrication as well as the combination of materials in the perovskite layer. Air knife-assisted blade coating enables good quality perovskite films to be formed but the device efficiencies still tend to lag behind those fabricated using spin-coated perovskite layers. Herein we report the use of three 2,3,4,5,6-pentafluorophenylethylammonium halides (FEAX, where X = I, Br or Cl) as additives in nitrogen knife-assisted blade-coated methylammonium lead iodide (MAPbI) perovskite solar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!