Thermal treatment is applied for the direct conversion of palm stalk waste to FeO (np)@carbon sheets (FeO (np)@CSs). The effect of conversion temperature was investigated. The TEM examination of the prepared magnetic FeO (np)@CSs showed the formation of FeO (np) in a matrix of carbon sheets as a coated layer with surface functional groups including carbonyl and hydroxyl groups. Removal of dyes such as methyl orange, methylene blue, and neutral red was achieved using fabricated FeO (np)@CSs which were prepared at 250 °C, 400 °C, and 700 °C in a weak acidic medium. By studying the contact time effect for the adsorption of methylene blue, neutral red, and methyl orange, using the fabricated FeO (np)@CSs which were prepared at 250 °C and 400 °C, equilibrium occurred between 120 min and 180 min. In addition, the first-order and second-order kinetic models were applied to the adsorption data. The results revealed that the adsorption data fit better with the second-order kinetic model. Furthermore, the Freundlich model was found to be more suitable for describing the process of the separation of the dyes onto FeO (np)@CSs which were prepared at 250 °C and 400 °C, suggesting heterogenous surfaces and multi-layer adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096804 | PMC |
http://dx.doi.org/10.3390/nano13071266 | DOI Listing |
Liver Transpl
January 2025
Hepato-biliary-pancreatic Surgery and Liver Transplantation Unit, Padua University Hospital, Padua, Italy.
Total hepatectomy and liver transplantation has emerged as a game-changing strategy in the treatment of several liver-confined primary or metastatic tumors, opening the new era of transplant oncology. However, the expansion of indications is going to worsen the chronic scarcity of organs, and new strategies are needed to enlarge the donor pool. A possible source of organs could be developing split liver transplantation (SLT) programs.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Grassland Science, Xinjiang Agricultural University, Urumqi, China.
Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as "rust tanks" of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food Science and Engineering, Hainan University, Haikou 570228, China.
Due to the fact that association colloids were formed in krill oil, the oxidation mechanism of krill oil was more complicated. In this study, water-soluble ferrous sulfate (Fe(SO)), oil-soluble ferrous fumarate (CHFeO) and insoluble ferric oxide (FeO) were added to krill oil and stored at 60 °C for accelerated oxidation. Peroxide value, thiobarbituric acid reactive substances and aldehyde content showed that Fe(SO) had a stronger pro-oxidative effect.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFNat Commun
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!