The effect of a-SiCN:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH, CH, and NH as the precursors, on the stability and photoluminescence of CsPbBr quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr QD thin films, thus holding potential for future developments in optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097036PMC
http://dx.doi.org/10.3390/nano13071228DOI Listing

Publication Analysis

Top Keywords

cspbbr qds
12
a-sicnh encapsulation
8
stability photoluminescence
8
cspbbr quantum
8
quantum dots
8
encapsulation layers
8
degradation cspbbr
8
a-sicxnyh layer
8
characteristics cspbbr
8
cspbbr
6

Similar Publications

With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.

View Article and Find Full Text PDF

All-Inorganic Perovskite Quantum-Dot Optical Neuromorphic Synapses for Near-Sensor Colored Image Recognition.

Adv Sci (Weinh)

December 2024

Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing (AISSM), National Cheng Kung University, No. 1, University Road, Tainan City, 70101, Taiwan.

As the demand for the neuromorphic vision system in image recognition experiences rapid growth, it is imperative to develop advanced architectures capable of processing perceived data proximal to sensory terminals. This approach aims to reduce data movement between sensory and computing units, minimizing the need for data transfer and conversion at the sensor-processor interface. Here, an optical neuromorphic synaptic (ONS) device is demonstrated by homogeneously integrating optical-sensing and synaptic functionalities into a unified material platform, constructed exclusively by all-inorganic perovskite CsPbBr quantum dots (QDs).

View Article and Find Full Text PDF

Single-particle photoluminescence measurements have been extensively utilized to investigate the charge carrier dynamics in quantum dots (QDs). Among these techniques, single dot blinking studies are effective for probing relatively slower processes with timescales >10 ms, whereas fluorescence correlation spectroscopy (FCS) studies are suited for recording faster processes with timescales typically <1 ms. In this study, we utilized scanning FCS (sFCS) to bridge the ms gap, thereby enabling the tracking of carrier dynamics across an extended temporal window ranging from μs to subsecond.

View Article and Find Full Text PDF

The design of high-performance and low-power formaldehyde (HCHO) gas sensors is of great interest to researchers for environmental monitoring and human health. Herein, InO/CsPbBr composites were successfully synthesized through an electrospinning and self-assembly approach, and their ultraviolet-activated (UV-activated) HCHO gas-sensing properties were investigated. The measurement data indicated that the InO/CsPbBr sensor possesses an excellent selectivity toward HCHO.

View Article and Find Full Text PDF

Efficient Energy Transfer from Quantum Dots to Closely-Bound Dye Molecules without Spectral Overlap.

Angew Chem Int Ed Engl

October 2024

Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539, Munich, Germany.

Quantum dots (QDs) are semiconductor nanocrystals whose optical properties can be tuned by altering their size. By combining QDs with dyes we can make hybrid QD-dye systems exhibiting energy transfer (ET) between QDs and dyes, which is important in sensing and lighting applications. In conventional QDs that need a shell to passivate surface defects, ET usually proceeds through Förster resonance energy transfer (FRET) that requires significant spectral overlap between QD emission and dye absorbance, as well as large oscillator strengths of those transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!