A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. | LitMetric

Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation.

Nanomaterials (Basel)

Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.

Published: March 2023

A high-performance Mg-10Gd-4Dy-1.5Ag-1Zn-0.5Zr (wt.%, EQ142X) alloy was designed by multi-element composite addition in this work, obtaining a high yield strength (~396 MPa) and ultimate tensile strength (~451 MPa) after hot extrusion and ageing. The high strength is mainly related to fine grains and nano-precipitates, especially the latter. ' and ″ nano-precipitation with high fractions are the main strengthening phases, leading to a strengthening increment of ~277 MPa. Moreover, the multi-element alloying in this study promotes the basal-prismatic network strengthening structure, composed of ' nano-precipitation with (1-210) habit planes, ″ nano-precipitation with (0001) habit planes, basal plane stacking faults and 14H-long period stacking ordered phase. In addition, the dislocations and fine grains introduced by the hot-extrusion process not only accelerate the precipitation rate of nanostructure and thus improve the ageing hardening efficiency, but also facilitate the formation of more uniform and finer nano-precipitation. Thus, it is proposed that introducing nano-precipitates network into fine-grained structure is an effective strategy for developing high-strength Mg alloys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096964PMC
http://dx.doi.org/10.3390/nano13071219DOI Listing

Publication Analysis

Top Keywords

high strength
8
fine grains
8
″ nano-precipitation
8
habit planes
8
nano-precipitation
5
developing mg-gd-dy-ag-zn-zr
4
mg-gd-dy-ag-zn-zr alloy
4
high
4
alloy high
4
strength
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!