Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCoFe(CO) precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based CoFe MFM nano-probes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097098PMC
http://dx.doi.org/10.3390/nano13071217DOI Listing

Publication Analysis

Top Keywords

force microscopy
12
magnetic force
8
apex radii
8
high performance
8
additive manufacturing
4
manufacturing cofe
4
nano-probes
4
cofe nano-probes
4
magnetic
4
nano-probes magnetic
4

Similar Publications

Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.

Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens.

View Article and Find Full Text PDF

Background: CHRFAM7A is a human-restricted gene associated with neuropsychiatric and neurodegenerative disorders. The translated CHRFAM7A protein incorporates into the α7 nicotinic acetylcholine receptor (α7nAChR) leading to a hypomorphic receptor. Mechanistic insight from isogenic iPSC derived neuronal and mononuclear cells demonstrated that CHRFAM7A affects Ca signaling and activates small GTPase Rac1 leading to an actin cytoskeleton gain of function.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

UCLA, Los Angeles, CA, USA.

Background: Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC fragments tau fibrils from AD brains (AD-tau) into benign segments, whereas its six-residue analog D-TLKIVW cannot. However, the underlying fragmentation mechanism remains unknown, preventing the further development of this type of drug candidate for AD.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder whose pathological hallmarks include tau and amyloid beta aggregation, a phenomenon that has been linked to inflammation and degradation of brain tissue. Prior data published in the Wang lab suggests that carbon dots (CDs) synthesized from citric acid and urea can inhibit aggregation. We sought to characterize the inhibitory effects of a new class of CDs synthesized from varied ratios of Congo red and citric acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!