The liquid metal transfer mode in wire arc additive manufacturing (WAAM), plays an important role in determining the build quality. In this study, a fast prediction model based on the Young-Laplace equation, momentum equation, and energy conservation, is proposed, to identify the metal transfer modes, including droplet, liquid bridge, and wire stubbing, for a given combination of process parameters. To close the proposed model, high-fidelity numerical simulations are applied, to obtain the necessary inputs required by the former. The proposed model's accuracy and effectiveness are validated by using experimental data and high-fidelity simulation results. It is proved that the model can effectively predict the transition from liquid bridge, to droplet and wire stubbing modes. In addition, its errors in dripping frequency and liquid bridge height range from 6% to 18%. Moreover, the process parameter windows about transitions of liquid transfer modes have been established based on the model, considering wire feed speed, travel speed, heat source power, and material parameters. The proposed model is expected to serve as a powerful tool for the guidance of process parameter optimization, to achieve high-quality builds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096320PMC
http://dx.doi.org/10.3390/ma16072911DOI Listing

Publication Analysis

Top Keywords

metal transfer
12
transfer modes
12
liquid bridge
12
fast prediction
8
prediction model
8
liquid metal
8
wire arc
8
arc additive
8
additive manufacturing
8
wire stubbing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!