Design Optimization of Additive Manufactured Edgeless Simple Cubic Lattice Structures under Compression.

Materials (Basel)

Architectural Engineering Program, Department of Architectural Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Published: April 2023

This study proposed an optimization framework and methodologies to design edgeless lattice structures featuring fillet and multipipe functions. Conventional lattice structures typically experience stress concentration at the sharp edges of strut joints, resulting in reduced mechanical performance and premature failure. The proposed approach aimed to improve the compression behavior of lattice structures by introducing edgeless features. Through finite element analysis, the optimized fillet edgeless simple cubic unit cell with a fillet radius to strut radius ratio of 0.753 showed a 12.1% improvement in yield stress and a 144% reduction in stress concentration. To validate the finite element analysis, experimental compressive tests were conducted, confirming that the introduction of edgeless functions improved the compressive strength of lattice structures manufactured through additive manufacturing. The optimized fillet edgeless simple cubic lattice structure exhibited the most effective improvement. This approach has promising potential for lattice structure applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095693PMC
http://dx.doi.org/10.3390/ma16072870DOI Listing

Publication Analysis

Top Keywords

lattice structures
20
edgeless simple
12
simple cubic
12
cubic lattice
8
stress concentration
8
finite element
8
element analysis
8
optimized fillet
8
fillet edgeless
8
lattice structure
8

Similar Publications

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Porous Single-Crystalline Rare Earth Phosphates Monolith to Enhance Catalytic Activity and Durability.

Molecules

January 2025

Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!