Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Damage often develops in glued laminated timber members under high bending loads due to natural defects in the timber, which results in their low load-bearing capacity and stiffness. In order to improve the bending mechanical properties of glulam beams, a new type of longitudinal glulam reinforcement with pre-stressed basalt fibre-reinforced polymer composites (BFRP) was developed using the Near Surface Mounted (NSM) technique. The strengthening method consisted of two pre-stressed BFRP bars glued into the grooves at the bottom side of the beam; meanwhile, for the second strengthening alternative, the third BFRP bar was embedded into the groove at the top side of the beam. Therefore, an experimental study was carried out to verify this strengthening technique, in which fifteen full-size timber beams were tested with and without bonded BFRP bar reinforcement in three series. According to the results of this experimental study, it can be seen that the effective load-bearing capacity of the reinforced beams increased up to 36% and that the stiffness of the beams increased by 23% compared to the unreinforced beams. The tensile stresses in the wooden fibres were reduced by 11.32% and 25.42% on average for the beams reinforced with two and three BFRP bars, respectively. On the other hand, the compressive stresses were reduced by 16.53% and 32.10% compared to the unreinforced beams. The usual failure mode saw the cracking of the wood fibres at the defects, while for some specimens, there were also signs of cracks in the epoxy adhesive bond; however, the crack propagation was, overall, significantly reduced. The numerical calculations also show a good correlation with the experimental results. The difference in the results between the experimental and numerical analysis of the reinforced and unreinforced full-sized beams ranged between 3.63% and 11.45%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095651 | PMC |
http://dx.doi.org/10.3390/ma16072776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!