Ultrathin MoO semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic properties of MoO/-Si via an ALD system of few nanometers, we utilized the preparation of an ultrathin MoO film at temperatures of 100, 150, 200, and 250 °C. The effect of the depositing temperatures on using bis(tbutylimido)bis(dimethylamino)molybdenum (VI) as a molybdenum source for highly stable UV photodetectors were reported. The ON-OFF and the photodetector dynamic behaviors of these samples under different applied voltages of 0, 0.5, 1, 2, 3, 4, and 5 V were collected. This study shows that the ultrasmooth and homogenous films of less than a 0.30 nm roughness deposited at 200 °C were used efficiently for high-performance UV photodetector behaviors with a high sheet carrier concentration of 7.6 × 10 cm and external quantum efficiency of 1.72 × 10. The electronic parameters were analyzed based on thermionic emission theory, where Cheung and Nord's methods were utilized to determine the photodetector electronic parameters, such as the ideality factor (), barrier height (Φ), and series resistance (R). The -factor values were higher in the low voltage region of the I-V diagram, potentially due to series resistance causing a voltage drop across the interfacial thin film and charge accumulation at the interface states between the MoO and Si surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095631PMC
http://dx.doi.org/10.3390/ma16072766DOI Listing

Publication Analysis

Top Keywords

thermionic emission
8
ultrathin moo
8
electronic parameters
8
series resistance
8
emission atomic
4
atomic layer
4
layer deposited
4
deposited moo/si
4
moo/si photodetectors
4
photodetectors ultrathin
4

Similar Publications

High-resolution cryo-electron microscopy (cryo-EM) requires costly 200- to 300-keV cryo-transmission electron microscopes (cryo-TEMs) with field emission gun (FEG) sources, stable columns, constant-powered lenses, autoloader, and direct electron detectors (DED). Recent advances in 100-keV imaging with the emergence of sub-200-keV optimized DED technology promises the development of more affordable cryo-TEMs. So far, 100-keV imaging has required microscopes with FEG sources.

View Article and Find Full Text PDF

Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.

Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.

View Article and Find Full Text PDF

Electron Loss and Dissociation Pathways of a Complex Dicarboxylate Dianion: EDTA.

J Phys Chem A

December 2024

Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom.

Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA is also investigated by electronic structure calculations, which indicate that EDTA has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss.

View Article and Find Full Text PDF

Metal/semiconductor superlattices represent a fascinating frontier in materials science and nanotechnology, where alternating layers of metals and semiconductors are precisely engineered at the atomic and nano-scales. Traditionally, epitaxial metal/semiconductor superlattice growth requires constituent materials from the same family, exhibiting identical structural symmetry and low lattice mismatch. Here, beyond this conventional constraint, a novel class of epitaxial lattice-matched metal/semiconductor superlattices is introduced that utilizes refractory hexagonal elemental transition metals and wide-bandgap III-nitride semiconductors.

View Article and Find Full Text PDF

Carboxymethyl cellulose/graphene oxide nanocomposite semiconductor for potential energy applications.

Int J Biol Macromol

January 2025

Institute of Engineering, Science, and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil; Pos-Graduate Program of Chemistry from Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil. Electronic address:

The present research produced a new nanocomposite based on carboxymethyl cellulose (CMC) and graphene oxide (GO) for application in energy devices. A modified Hummers' method and two modifiers (UV radiation and heat temperature) were used. The nanocomposite was characterized by spectroscopies (FTIR, RAMAN, UV Vis), X-ray diffraction, morphological (SEM, TEM, DLS), and surface charge (ZP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!