Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Additive metals are practically identical in strength to the properties of conventionally produced materials. This article experimentally analyses strength properties and fatigue properties in the tensile-pressure mode for two different directions of 3D printing of AlSiMg material. The resulting fatigue parameters of the Basquin curve are confronted with a conventionally produced alloy of the same composition. The microstructure analysis explains the different fatigue properties obtained by these two material production technologies. Phenomena such as strength enhancement in additive manufacturing material, anisotropy of cyclic properties, and cyclic hardening are discussed. The limits of current additive manufacturing are clarified, and the future direction of research in this field is outlined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095530 | PMC |
http://dx.doi.org/10.3390/ma16072598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!