Shape-stable phase change materials (ss-PCMs) are extensively applied in renewable energy storage. The core for realizing high latent heat and good thermal stability of ss-PCMs is the designation of suitable supporting skeletons that can effectively preserve the PCMs from leaking out. In this study, ss-PCMs impregnated by D-mannitol were prepared using a waste yeast-derived carbon (YC) as the support material. YC possesses a large surface area (669.90 m/g), which can provide sufficient phase transition space and nucleation sites for D-mannitol. The results indicated that a reduced supercooling of 44.76 °C for YC/D-mannitol ss-PCMs can be realized. The ss-PCMs also exhibited good cycling stability, with latent heat loss rates of 4.00% and 2.15% after 200 thermal cycles. We further demonstrate that YC provides restricted space for mannitol to inhibit the supercooling mechanism. The YC/D-mannitol ss-PCMs exhibited great promise for solar heat storage and industrial waste heat recovery in the medium temperature domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095347PMC
http://dx.doi.org/10.3390/ma16072569DOI Listing

Publication Analysis

Top Keywords

medium temperature
8
energy storage
8
latent heat
8
yc/d-mannitol ss-pcms
8
ss-pcms exhibited
8
ss-pcms
6
spent yeast-derived
4
yeast-derived porous
4
porous carbon
4
carbon skeleton
4

Similar Publications

Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.

View Article and Find Full Text PDF

Colour is an integral part of natural and constructed environments. For many, it also has an aesthetic appeal, with some colours being more pleasant than others. Moreover, humans seem to systematically and reliably associate colours with emotions, such as yellow with joy, black with sadness, light colours with positive and dark colours with negative emotions.

View Article and Find Full Text PDF

This study investigates climate change impacts on spontaneous vegetation, focusing on the Mediterranean basin, a hotspot for climatic changes. Two case study areas, Monti Sibillini (central Italy, temperate) and Sidi Makhlouf (Southern Tunisia, arid), were selected for their contrasting climates and vegetation. Using WorldClim's CMCC-ESM2 climate model, future vegetation distribution was predicted for 2050 and 2080 under SSP 245 (optimistic) and 585 (pessimistic) scenarios.

View Article and Find Full Text PDF

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures.

ACS Nano

January 2025

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.

With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!