Improving mortar shielding properties to preserve environmental and human safety in radiation facilities is essential. Conventional cement mortars, composed of cement, water, and lime aggregate, are crucial for radiation shielding. Using recycled aggregates to produce new mortar and concrete compositions has attracted the attention of several researchers. In the current study, waste marble and iron slag as aggregates are used to create novel cement mortar compositions to study the aggregate's impact on the radiation attenuation capability of the mortar. Three mortar groups, including a control mortar (CM-Ctrl), were prepared based on cement and waste marble. The other two groups (CM-MIS, CM-NIS), contained 25% iron slag at different particle sizes as a replacement for a waste marble. The study aims to compare iron slag in their micro and nano sizes to discuss the effect of particle size on the mortar radiation capability. For this purpose, the NaI scintillation detector and radioactive point sources (Am, Ba, Cs, Co, and Eu) were utilized to measure several shielding parameters, such as the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), for the produced mortars at different photon energies. Furthermore, the transmission electron microscope (TEM) is used to measure the particle size of the aggregates. In addition, a scanning electron microscope (SEM) is utilized to acquire the cross-section morphologies of the prepared mortars. According to our findings, mortars prepared with nano-iron slag and waste marble offered superior shielding capabilities than mortars containing natural sand or fine crushed stone. The nano iron slag mortar can be utilized in place of typical sand mortar for applications as rendering or plastering materials for building medical diagnostic and CT scanner rooms, due to its improved shielding abilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095434 | PMC |
http://dx.doi.org/10.3390/ma16072541 | DOI Listing |
Materials (Basel)
December 2024
School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam.
The increasing demand for sustainable construction materials has driven the exploration of alternative fillers in asphalt production. Traditional asphalt mixtures rely heavily on natural aggregates and petroleum-based binders, contributing to environmental degradation. This study proposes an innovative solution by utilizing Crushed Recycled Marble Stone Powder (CRMSP) as a sustainable filler in SBS polymer-modified asphalt containing high volumes of recycled tire rubber, addressing both resource depletion and waste management concerns.
View Article and Find Full Text PDFMolecules
December 2024
School of Civil Engineering, Putian University, Putian 351100, China.
Herein, the study explores a composite modification approach to enhance the use of recycled concrete aggregate (RCA) in sustainable construction by combining accelerated carbonation (AC) and nano-silica immersion (NS). RCA, a major source of construction waste, faces challenges in achieving comparable properties to virgin aggregates. Nano-silica, a potent pozzolan, is added to fill micro-cracks and voids in RCA, improving its bonding and strength.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Air Liquide, Brussels, Belgium. Electronic address:
The operation of a reverse osmosis (RO) system is often severely hindered by the deposition of inorganic scales such as calcium carbonate on the membrane surface. Mitigation of this scaling phenomenon requires suitable pH control strategies, with the use of strong mineral acids (e.g.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Faculty of Radiological Technology, Rangsit University, Pathumthani, 12000, Thailand.
This study explores the development and efficacy of eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications. Eggshells, primarily composed of calcium carbonate, were processed into particles of three sizes: small, medium, and large. These particles were incorporated into epoxy resin at a 50% weight ratio and characterized using a Laser Particle Size Distribution Analyzer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!