Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of partial substitution of soybean meal by equal quantities of flaxseed and lupins in diets of Holstein dairy cows and heifers was investigated. A total of 6 animals (30 multiparous and 30 primiparous) were allocated into two equal groups in a randomised block design and fed control (group CO) or modified (group FL) TMR diets from three weeks prior to calving until day 40 postpartum. The TMR of group CO contained corn, barley, soybean meal, rapeseed cake, corn silage, and Lucerne hay, whereas in group FL equal quantities of whole flaxseed and lupins were used to replace 50% of the soybean meal in the TMR. All animals were fed twice daily with a daily allowance of 24 kg dry matter intake per animal. Milking was carried out three times daily and milk yield was recorded during every milking. Milk samples were analysed for chemical composition and SCC content. White cheeses were manufactured from bulk milk of each group at industrial level. Bulk milk and white cheese were analysed for chemical composition and fatty acid profile; cheese was also assessed for its organoleptic properties. Results indicate that milk yield did not differ among groups. Lipid oxidation values were similar among the groups, for both milk and cheese. However, FL inclusion resulted in lower ( < 0.05) protein carbonyls and higher ( < 0.05) phenolic compounds in both milk and cheese samples. Milk from the FL group had decreased palmitic ( < 0.05) and myristic ( < 0.05) and increased oleic ( < 0.05) and linolenic acid ( < 0.05) when compared to group CO. White cheese from group FL showed a decrease in saturated fatty acids (SFA) ( < 0.05), an increase in monounsaturated fatty acids (MUFA) ( < 0.05), and a higher increase in polyunsaturated fatty acids (PUFA) ( < 0.05) when compared with that of group CO. The white cheese of cows fed diets with flaxseed and lupins showed compositional and organoleptic properties quite similar to control group cheese; aroma, texture, and color were acceptable and desirable in both cheeses. However, increased levels of n-3 polyunsaturated fatty acids were found in the cheese of FL fed animals. The substitution of soybean meal by flaxseed and lupins in diets of Holstein cows warrants further investigation, especially towards the production of cheese that meet the consumers' demand for novel and healthier dairy products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093268 | PMC |
http://dx.doi.org/10.3390/ani13071159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!