Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. Here we identified β-isoforms of neurexins (β-NRXs) as presynaptic organizing proteins that interact with α-syn preformed fibrils (α-syn PFFs), toxic α-syn aggregates, but not α-syn monomers. Our cell surface protein binding assays and surface plasmon resonance assays reveal that α-syn PFFs bind directly to β-NRXs through their N-terminal histidine-rich domain (HRD) at the nanomolar range (K: ~500 nM monomer equivalent). Furthermore, our artificial synapse formation assays show that α-syn PFFs diminish excitatory and inhibitory presynaptic organization induced by a specific isoform of neuroligin 1 that binds only β-NRXs, but not α-isoforms of neurexins. Thus, our data suggest that α-syn PFFs interact with β-NRXs to inhibit β-NRX-mediated presynaptic organization, providing novel molecular insight into how α-syn PFFs induce synaptic pathology in synucleinopathies such as Parkinson's disease and dementia with Lewy bodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093570 | PMC |
http://dx.doi.org/10.3390/cells12071083 | DOI Listing |
Alzheimers Dement
December 2024
University of Oxford, Oxford, United Kingdom.
Background: Alzheimer's (AD) and Parkinson's disease (PD) feature progressive neurodegeneration in a remarkably regionally selective manner. Post mortem studies have posited a role for cell autonomous mechanisms driving this, so we aimed to examine a live human induced pluripotent stem cell (iPSC) model to see whether it can replicate the phenomenon of selective neuronal vulnerability, so to better determine disease mechanisms and therapeutic targets.
Method: iPSC-derived neurons offer a rare opportunity to examine cell autonomous vulnerability in live human cells.
Mol Biol Cell
January 2025
Ann Romney Center for Neurologic Diseases, Department of Neurology Brigham and Women's Hospital and Harvard Medical School Boston, MA 02115 USA.
Parkinson disease (PD) is the second most common neurodegenerative disease, characterized by both motor and cognitive features. Motor symptoms primarily involve midbrain dopaminergic neurons, while cognitive dysfunction involves cortical neurons. Environmental factors are important contributors to PD risk.
View Article and Find Full Text PDFiScience
December 2024
Department of Biomedical and Clinical Sciences, Department of Clinical Pathology, Linköping University, Linköping, Sweden.
Accumulating evidence demonstrates that alpha-synuclein (α-syn) pathology associated with Parkinson's disease (PD) is not limited to the brain, as it also appears in a select number of peripheral tissues including the liver. In this study, we identified a number of PD-associated α-syn post-translational modifications in the livers of (Thy-1)-h[A30P] mice, a mouse model of familial PD expressing human α-syn harboring the A30P mutation driven by a neuron-specific promoter. , we also demonstrate that human hepatocytes induce post-translational modifications following α-syn fibrillar (PFF) treatment.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn PFFs, caused the death of the iNs but not of the parental iPSCs and non-neuronal cells.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2024
Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Bengaluru, Karnataka, India.
Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!