Legacy stores of faecal pollution in streambed sediments can result in delayed impacts on environmental quality and human health if resuspended into the overlying water column. Different catchment sources of faecal pollution can contribute to a legacy store of microbial pollutants, with size of stores influenced by microbial die-off and faecal accrual rates in the streambed. The aim of this study was to use a mesocosm experiment to characterise the persistence of derived from faeces of dairy cows, deer, and geese once introduced to streambed sediment under different temperature regimes. The settling rate of solid constituents of faecal material into streambed sediment once delivered into an aquatic environment was also quantified. The persistence patterns of in streambed sediment were found to vary as a function of faecal source and temperature; die-off of in sediment contaminated with goose faeces was more rapid than in sediments contaminated with dairy cow or deer faeces. Goose faeces also recorded a more rapid settling rate of faecal particles through the water column relative to dairy cow and deer faeces, suggesting a more efficient delivery of to streambed sediments associated with this faecal source. Our findings provide new evidence to improve understanding of the potential longer-term risks to both the environment and public health posed by sediments when contaminated with livestock, wildlife, and wildfowl faeces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094563 | PMC |
http://dx.doi.org/10.3390/ijerph20075375 | DOI Listing |
Sci Total Environ
January 2025
Department of Ecology and Environmental Protection, University of Rzeszów, Poland.
Mountain environments, as biodiversity hotspots, are subject to numerous anthropological pressures. In mountain areas, a common threat to stream biocenoses is the timber industry. Timber industry increases the fine sediment input into the mountain rivers; furthermore, timber transport requires the construction of low-water crossings across streams.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom.
Excess fine sediment supply and its associated contaminants can have detrimental effects on water quality and river ecology with sediment deposition on, and subsequent infiltration in, streambeds impacting riverine habitats. Fallout radionuclides (FRNs) are used as tracers in aquatic systems, and the Be/Pb ratio is a useful indicator for sediment residence/storage time. Suspended and submerged mid-channel bar sediments were collected during five surveys within a 5 km reach of a typical temperate lowland agricultural river system.
View Article and Find Full Text PDFSci Total Environ
January 2025
Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F 69622, Villeurbanne, France; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Microplastics (MPs) are prevalent in rivers worldwide and can adversely impact riverine ecosystems. To sample for MPs in streambeds, a variety of different sampling techniques is applied, including (i) scooping, (ii) coring, (iii) freeze coring, (iv) resuspension method, and (v) piezometer sampling. These common sampling techniques capture different parts of the streambed and different sampling volumes.
View Article and Find Full Text PDFPeerJ
October 2024
Northern Region, United States Forest Service, Missoula, MT, United States.
Human activities can increase sediment delivery to streams, changing the composition, distribution, and abundance of stream aquatic life. Few U.S.
View Article and Find Full Text PDFEnviron Sci Technol
October 2024
Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!